Note

A novel preparation of D-fructopyranose 5-sulphate

ANTHONY MARKER, ALEXANDER B. ROY, AND JENNIFER TURNER

Department of Physical Biochemistry, John Curtin School of Medical Research, P.O. Box 334, Canberra City, A.C.T. 2601 (Australia)

(Received August 3rd, 1982; accepted for publication, September 10th, 1982)

We have described¹ the synthesis and characterisation of a series of galactopyranose and glucopyranose sulphates, and their use in an investigation² of the specificity of sulphatase A. For the completion of this work, D-glucofuranose 5-sulphate was sought. The preparation³ of D-glucofuranose 5-phosphate from 3-O-acetyl-1,2-O-isopropylidene-6-O-triphenylmethyl- α -D-glucofuranose suggested a route to D-glucofuranose 5-sulphate.

The reaction of 3,6-di-O-acetyl-1,2-O-isopropylidene- α -D-glucofuranose with pyridine-sulphur trioxide followed by deacetylation gave the expected 1,2-O-isopropylidene- α -D-glucofuranose 5-(barium sulphate) (1), which was characterised by 13 C-n.m.r. spectroscopy (Table I). As with other monosaccharide sulphates¹, there was a large downfield shift (7.33 p.p.m.) in the signal for C-5, which carries the sulphate group, and smaller upfield shifts (1.61 and 2.57 p.p.m., respectively) in the signals for C-4 and C-6.

Autohydrolysis of the free-acid form of 1 removed the isopropylidene group and gave a sulphate ester of a reducing sugar, but the p.m.r. spectrum showed that it was not D-glucofuranose 5-sulphate because there was no signal for an anomeric proton. Also, the 13 C-n.m.r. spectrum was not consistent with a glucofuranose derivative. Proton-coupled, 13 C-n.m.r. spectroscopy showed that the compound contained one quaternary, three secondary, and two primary carbon atoms, and the spectrum was consistent with D-fructopyranose 5-(potassium sulphate). There was a large downfield shift (8.32 p.p.m.) in the signal for C-5, and smaller upfield shifts (1.46 and 2.47 p.p.m., respectively) in the signals for C-4 and C-6. As shown in Table I, the deuterium-induced, differential isotope shifts (d.i.s. shifts)⁴ confirmed these assignments. Only for C-2 was there a significant discrepancy between the observed and calculated d.i.s. values, and a similar low value (0.12) has been observed⁴ for C-2 in β -D-fructopyranose.

D-Fructose 5-sulphate was a substrate for sulphatase A: with $K_{\rm m}$ and V values of 48 mm and 13 μ mol.mg⁻¹.min⁻¹, respectively: these values are comparable to

FABLE I

 $^{13}\text{C-N.M.R.}$ data for 1,2- 0 -inopropatioened-glucosf, d-fructosf, and their 5-nulhates

				,					and all the second
	Chemical and diss. shifts (p.p.m.)"	i.s. shifts (p.p	J.M.) "						
	: :	7 100 2 100 2	3 .	5 2 E	to the state of th				
	C-1	<u>:</u>	C-3	C-4	C-5	C-6	ن	CH_3	
A sector of the	í	,	,		ì	day y		ĭ,	
1.2-O-Isopropy lidene-in-glucofuranose	105.43	85.14	74.33	80.51	69.16	64.23	113.42	13.42 26.31	25.88
1,2-O-Isopropylidene-19-glucofuranose									
5-(barium sulphate)	105.42	84.93	74.27	78.90	76.69	99.19	113.57	26 36	25.92
/l-D-Fructopyranose	64.91	68.86	68.57	70.68	70.16	64.24	-	Managan	£ I
//	64.64	06.86	68.50	69.22	78.48	61.77	manage of	and in	
	0.19 (0.18)"	0.11 (0.17)	0.22 (0.20)	0.16 (0.17)	0.00 (0.03)	00 (0 00)			

21 C-Chemical shifts were measured with respect to internal 1.4-diovane and converted to the Me₁S1 scale by using the relationship $\delta_{M_1, S_1} = \delta_{diuxane}$. 67.40 "Values are for the observed and (in brackets) calculated d.i.s. values. for p-fructose 5-sulphate,

NOTE 333

those for D-glucose 3-sulphate². Moreover, the liberated sugar had the chromatographic properties of fructose (see Experimental).

Unlike gluco- and galacto-pyranose sulphates¹, the fructopyranose 5-sulphate was precipitated by ethanol as a single anomer, as shown by ¹³C-n.m.r. spectroscopy. D-Fructopyranose exists⁴ in solution mainly as the β anomer, and this is likely also for the 5-sulphate which had an $\lceil \alpha \rceil_D$ value (water) of -86° .

The conversion of a 5-substituted 1,2-O-isopropylidene- α -D-glucofuranose into a 5-substituted β -D-fructopyranose apparently has not been described hitherto and presumably involves a Lobry de Bruyn-Alberda van Ekenstein transformation⁵ of D-glucofuranose 5-sulphate. The slow transformation of glucose into fructose in acid solution is long known⁶, but the conversion noted here, as judged by the disappearance of the n.m.r. signal for the anomeric proton, was essentially complete in 30 min at 70°. The reaction is also unusual in that the ketose is the main product, whereas, in most such transformations, a complex mixture of sugars is obtained⁵. If the transformation is a general one, it could be useful for the synthesis of 5-substituted fructopyranoses, although other routes⁷ are available.

The above results cast doubt on the structure of the presumed p-glucofuranose 5-phosphate³, but it should be noted that Fitzgerald⁸ suggested a specific role for the sulphate group in the Tris-catalysed isomerisation of glucose 6-sulphate to fructose 6-sulphate.

EXPERIMENTAL

General methods. — The general chemical and spectroscopic methods were described in the previous paper¹.

1,2-O-Isopropylidene- α -D-glucofuranose 5-(barium sulphate). — 3,6-Di-O-acetyl-1,2-O-isopropylidene- α -D-glucofuranose (7.3 g, 24 mmol) was treated overnight with pyridine-sulphur trioxide (5.8 g, 36 mmol) in pyridine (100 mL) at room temperature and the product (13 g) was isolated by the usual methods¹. This was deacetylated with methanolic barium methoxide to give the crude, title compound (10 g). P.m.r. data (D₂O): δ 5.83 (d, $J_{1.2}$ 3.66 Hz, H-1).

 β -D-Fructopyranose 5-(potassium sulphate). — The foregoing compound (two lots of 4.0 and 6.0 g) was converted into the free acid by passage through a column of Dowex-50(H⁺) resin and the acidic eluate (\sim 100 mL for each lot) was kept for 40 min at 80°. Removal of the isopropylidene group was confirmed by p.m.r. spectroscopy, and the barium salt of the sulphate ester was obtained in the usual manner¹.

This crude barium salt (10 g) was converted into the free acid, as described above, and thence¹⁰ into the brucine salt. Three recrystallisations from aqueous acetone¹⁰ gave a product (3.6 g), m.p. $176-178^{\circ}$ (dec.), $[\alpha]_D -65^{\circ}$ (water).

Anal. Calc. for $C_6H_{11}O_9S \cdot C_{23}H_{27}N_2O_4$: C, 53.2; H, 5.85; N, 4.28; S, 4.90. Found: C, 52.9; H, 4.57; N, 4.17; S, 4.57.

The pure brucine salt (2.3 g) was converted¹⁰ into the potassium salt, which was precipitated from aqueous solution with ethanol¹ to give the title compound

334 NOTE

(0.9 g), $[\alpha]_D$ -86° (water). The tenaciously retained ethanol of solvation was detectable by ¹³C-n.m.r. spectroscopy, and there was no n.m.r. signal (D₂O) for an anomeric proton.

Anal. Calc. for $C_6H_{11}KO_9S$: C, 24.2; H, 3.72; S, 10.8. Found: C, 23.9; H, 4.02; S, 9.28.

Enzymic hydrolysis of D-fructopyranose 5-sulphate. — A solution of D-fructose 5-(potassium sulphate) (25 μ mol) in 0.1M pyridine-acetic acid buffer (pH 5.6, 0.25 mL) was treated with 250 μ g of sulphatase A for 4 days at room temperature, when analysis² revealed $\sim 50^{\circ}_{o}$ hydrolysis. Dilution (10-fold) of a sample of the hydrolysate with water followed by t.l.c. [phosphate-impregnated Silica gel 60 (Merck), acetone-2-propanol–0.1M lactic acid (2:2:1), detection with orcinol and 1-naphthol-phosphoric acid 13 revealed fructose, $R_{\rm F}$ 0.20 (cf. 0.26 for glucose)

REFERENCES

- 1 P. J. ARCHBALD, M. D. FENN, AND A. B. ROY, Carbohydt. Res., 93 (1981) 177-190.
- 2 A. B. ROY AND J. TURNER, Biochim. Biophys. Acta, 704 (1982) 366-373
- 3 K. Josephson and S. Proffe, Biochem. Z., 258 (1933) 147-153
- 4 P. E. PFEFFFR, K. M. VALENTINE, AND F. W. PARISH, J. Am. Chem. Soc., 101 (1979) 1265-1274.
- 5 J. C. SPECK, JR., Adv. Carbohydr. Chem., 13 (1958) 63-103.
- 6 H. Ost, Z. Angew. Chem., 18 (1905) 1170-1174.
- 7 K. HEYNS AND J. HEUKSHOVEN, Justus Liebigs Ann. Chem., (1976) 269-283.
- 8 J. W. FITZGERALD, Can. J. Biochem., 53 (1975) 906-910.
- 9 K. FREUDENBERG AND K. VON OLRTZEN, Justus Liebigs Ann. Chem., 574 (1951) 37-53.
- 10 K. B. GUISELEY AND P. M. RUOFF, J. Org. Chem., 26 (1961) 1248-1254
- 11 S. A. Hansen, J. Chromatogr., 107 (1975) 224-226.
- 12 L. HOUGH, J. K. N. JONES, AND W. H. WADMAN, J. Chem. Soc., (1950) 1702-1706.
- 13 N. ALBON AND D. GROSS, Analyst, 75 (1950) 454-457.